Uncertainty of Artificial Neural Networks for Daily Evaporation Prediction (Case Study: Rasht and Manjil Stations)

Authors

  • shahedi, kaka Sari University of Agricultural Sciences and Natural Resources
Abstract:

This research uses the multilayer perceptron (MLP) model to predict daily evaporation at two synoptic stations located in Rasht and Manjil, Guilan province, in north-west of Iran. Initially the most important combinations of climatic parameters for both of the stations were identified using the gamma test; and daily evaporation were modeled based on the obtained optimal combination. The results of the artificial neural network- Gamma Test (ANN-GT) model are evaluated using the root mean square errors (RMSE), correlation coefficient and Nash-Sutcliffe (NS) criteria. The results showed that the ANN-GT model for Rasht station with a correlation coefficient 0.86, root mean square error 0.95 and Nash-Sutcliffe criteria 0.74 and for Manjil station with correlation coefficient 0.94, root mean square error1.58 and Nash-Sutcliffe criteria 0.89 has an acceptable performance in predicting daily evaporation. To evaluate the uncertainty, we considered a percentage of data which were included in 95 percent of uncertainty (p-factor) and the average width of the 95ppu band (d-factor). Regarding the uncertainty results, the average with of 95PPU bound were obtained as 0.33 and 0.3 for the Manjil and Rasht stations, respectively. This shows the low uncertainty level of the ANN-GT model for predicting daily evaporation at both of the stations. Furthermore, the percentage of the observed data at 95PPU band was low and equal to %25 and %45 for the Rasht and Manjil stations, respectively. The reason for these low values can be due to low uncertainty in the parameters. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Estimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)

Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...

full text

estimation of daily evaporation using of artificial neural networks (case study; borujerd meteorological station)

evaporation is one of the most important components of hydrologic cycle.accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. in order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. using direct methods require installing meteorological stations andinstruments ...

full text

Daily Pan Evaporation Estimation Using Artificial Neural Network-based Models

Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....

full text

technical and legal parameters for determination of river boundary,( case study haraz river)

چکیده با توسعه شهر نشینی و دخل و تصرف غیر مجاز در حریم رودخانه ها خسارات زیادی به رودخانه و محیط زیست اطراف آن وارده می شود. در حال حاضر بر اساس آئین نامه اصلاح شده بستر و حریم رودخانه ها، حریم کمی رودخانه که بلافاصله پس از بستر قرار می گیرد از 1 تا20 متر از منتهی الیه طرفین بستر رودخانه تعیین، که مقدار دقیق آن در هر بازه از رودخانه مشخص نیست. در کشورهای دیگر روشهای متفاوتی من جمله: درصد ریسک...

15 صفحه اول

monthly rainfall prediction using artificial neural networks and m5 model tree (case study: station of ahar)

introduction rainfall is considered as one of the most important factures in water cycle. prediction of monthly rainfall is important for many purposes such as estimating torrent, drought, run-off, sediment, irrigation programming and also management of drainage basins. rainfall prediction in each area is mediated by punctual data measured as humidity, temperature, wind speed and etc. as iran i...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 19

pages  1- 12

publication date 2019-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023